SEM-IV
 PHYH-C IX: ELEMENTS OF MODERN PHYSICS

Manoj Kumar Saha,

Assistant Professor, Department of Physics K C College Hetampur

Eigen function, Eigen value, Expection value

Eigen function: When an operator acting on a function will always produce the same function multiplied by a constant factor, the function is called an eigen function and the constant is known as the eigen value of the given operator.

Thus, if \hat{A} is an operator that operates on a given function $f(x)$

$$
\begin{equation*}
\hat{A} f(x)=\lambda f(x) \tag{1}
\end{equation*}
$$

where λ is a constant. This equation is called eigen value equation, the constant λ known as eigen value and the function $f(x)$ is called the eigen function of the corresponding operator \hat{A}. All the operators in quantum mechanics have an eigen function and eigen values.
Example: Let the operator $\hat{\alpha}=\frac{d^{2}}{d x^{2}}$ and $\phi(x)=e^{-2 x}$
Then

$$
\begin{array}{r}
\hat{\alpha} \phi(x)=\lambda \phi(x) \\
\frac{d^{2}}{d x^{2}}\left(e^{-2 x}\right)=4\left(e^{-2 x}\right) \tag{2}
\end{array}
$$

Thus operating the function $e^{-2 x}$ by the operator $\frac{d^{2}}{d x^{2}}$ multiplies the function by the numerical factor 4 . We may say that $e^{-2 x}$ is an eigen function of the operator $\frac{d^{2}}{d x^{2}}$ belonging to the eigen value 4 .
To be an eigen function, $\phi(x)$ must be well behaved which means that
itmust satisfy the following requirement:
(a) $\phi(x)$ must be single valued every where;
(b) $\phi(x)$ must be square integrable so that integral of its modulus square is finite;
(c) $\phi(x)$ must be continuous everywhere;
(d) the derivative $\frac{d \phi}{d x}$ should be continuous everywhere;
(e) $\phi(x)$ must remain finite or vanish as $x \rightarrow \pm \infty$.

Problem-1 Which one of the following functions are eigen functions of the operator $\frac{d^{2}}{d x^{2}}$? .Calculate also the eigen value where appropriate; i. $\operatorname{Cos} x$, ii $e^{i x}$, iii. $\operatorname{Sin}^{2} x$, iv. $e^{4 x}$

Expectation value

The expectation value of a dynamical quantity is the mathematical expectation for the result of a single measurement. In otherwards, it is average of the results of a large number of measurements on independent identical system having identical functions.

The average or expectation value of any function $f(x)$ is given by

$$
\begin{equation*}
\langle f(x)\rangle=\int_{-\infty}^{\infty} \psi^{*}(x, t) f(x) \psi(x, t) d x \tag{3}
\end{equation*}
$$

Subject to the normalization condition
$\int_{-\infty}^{\infty} \psi^{*}(x, t) \psi(x, t) d x=1 \quad$ i. e . $\psi(x, t)$ is normalized.

Expectation value of momentum $\hat{p_{x}}=-i \hbar \frac{\delta}{\delta x}$

$$
\begin{aligned}
& \left\langle p_{x}\right\rangle=\int_{-\infty}^{\infty} \psi^{*}(x, t) \hat{p_{x}} \psi(x, t) d x \\
& =\int_{-\infty}^{\infty} \psi^{*}(x, t) \hat{p_{x}} \psi(x, t) d x \\
& =\int_{-\infty}^{\infty} \psi^{*}(x, t)\left(-i \hbar \frac{\delta}{\delta x}\right) \psi(x, t) d x \\
& =-i \hbar \int_{-\infty}^{\infty} \psi^{*}(x, t) \frac{\delta}{\delta x} \psi(x, t) d x
\end{aligned}
$$

Expectation value of Energy

$$
\begin{aligned}
\langle E\rangle & =\int_{-\infty}^{\infty} \psi^{*}(x, t)\left(i \hbar \frac{\delta}{\delta t}\right) \psi(x, t) d x \\
\langle E\rangle & =i \hbar \int_{-\infty}^{\infty} \psi^{*}(x, t) \frac{\delta}{\delta t} \psi(x, t) d x
\end{aligned}
$$

Problem-2 A particle is moving along X axis has the wave function

$$
\psi(x)=\left\{\begin{array}{cc}
b x, & \text { between } x=0 \text { and } x=1 \\
0 & \text { elsewhere }
\end{array}\right.
$$

Find the expectation value $\langle x\rangle$ of the particles position.

If $\psi(x)$ is the wave function of the moving particle, expectation values of position is

$$
\begin{gathered}
\langle x\rangle=\int_{-\infty}^{\infty} \psi^{*}(x)(\hat{x}) \psi(x) d x \\
=\int_{0}^{1} x|\psi(x)|^{2} d x \\
=\int_{0}^{1} x|b x|^{2} d x \\
=b^{2} \int_{0}^{1} x^{3} d x \\
=\frac{b^{2}}{4}
\end{gathered}
$$

Problem-3 Find the expectation values $\langle x\rangle$ and $\left\langle p_{x}\right\rangle$ for the Gaussian packet given by
$\psi(x)=\left(\frac{1}{\sigma \sqrt{\pi}}\right)^{\frac{1}{2}} e^{-\frac{x^{2}}{2 \sigma^{2}}} e^{(i k x)}$

